
Building a Game Application
In this chapter we will set up our Visual Studio project and build a basic OpenGL
application from scratch. We will be using this application throughout the book by
extending its capabilities and introducing more features in the later chapters.

We are not going to build anything as complex as the latest multimillion dollar
budget First-person shooter or Real-time strategy games in a scant 100 pages, but
we are going to learn as much as we can about using OpenGL graphics and Bullet
physics by writing small 3D demos. These demos will teach you the foundations
necessary to build customized physics and graphical effects in other game projects.
Sounds fun? Then let's get started!

Application components
In order to create the simple 3D game demo applications of this book, we will need
the following four essential components:

•	 Application layer
•	 Physics
•	 Graphics
•	 Input handling

The reason for the application layer should be pretty obvious; it provides a
starting point to work with, even if it's just a blank window. Meanwhile, we
need the remaining components to provide two important elements of any
game: visuals and interactivity. If you can't see anything, and you can't interact
with it, it would be quite a stretch to claim that what you have is a game!

Building a Game Application

[8]

These are the essential building blocks or components of most games and game
engines, and it's important to note that each of them is independent of the rest.
When we write code to implement or change the visualization of our objects, we
don't want to have to worry about changing anything in the physics system at the
same time. This decoupling makes it easy to make these components as simple or
complex as we desire.

Of course, a modern game or game engine will have many more components than
this, such as networking, animation, resource management, and even audio; but
these won't be necessary for the applications in this book since we are focussed on
learning about physics and graphics with two specific libraries: Bullet and OpenGL
respectively. However, the beauty of component-based design is that there's nothing
that stops us from grabbing an audio library such as FMOD and giving the demos
some much needed sound effects and background music, thus bringing them one
step closer to being real games.

Bullet is a physics engine and it is important to realize that Bullet is only a physics
simulation solution. It does not provide a means for visualizing its objects and
it never promises to. The authors of the library assume that we will provide an
independent means of rendering, so that they can focus on making the library as
feature-rich in physics as possible. Therefore, in order to visualize Bullet's objects,
we will be using OpenGL. But, OpenGL itself is a very low-level library that is as
close to the graphics-card hardware as you can get. This makes it very unwieldy,
complicated, and frustrating to work with, unless you really want to get into the
nuts and bolts of 3D graphics.

To spare us from such hair-pulling frustration, we will be using FreeGLUT. This is
a library which encapsulates and simplifies OpenGL instructions (such libraries are
often called wrappers) and, as a bonus, takes care of application bootup, control, and
input handling as well. So, with just Bullet and FreeGLUT, we have everything that
we need to begin building our first game application.

Exploring the Bullet and FreeGLUT
projects
Packaged versions of the Bullet and FreeGLUT projects can be found with this
book's source code, which can be downloaded from the PACKT website at:
http://www.packtpub.com/learning-game-physics-with-bullet-physics-
and-opengl/book

Chapter 1

[9]

Note that this book uses Bullet Version 2.81. As of the time of
writing, Bullet is undergoing an overhaul in Version 3.x to make use
of multiprocessor environments and push physics processing onto
GPUs. Check this github repository for more information:
http://github.com/erwincoumans/bullet3

Bullet and FreeGLUT can also be downloaded from their respective project websites:

•	 http://bulletphysics.org

•	 http://freeglut.sourceforge.net

Bullet and FreeGLUT are both open source libraries, licensed under the zlib
and X-Consortium/MIT licenses, respectively. The details can be found at:

http://opensource.org/licenses/zlib-license.php

http://opensource.org/licenses/MIT

Also, the main website for OpenGL itself is: http://www.opengl.org

Exploring Bullet's built-in demo
applications
A lot of the designing and coding throughout this book is based upon, and very
closely mimics the design of Bullet's own demo applications. This was intentional for
good reason; if you can understand everything in this book, you can dig through all
of Bullet's demo applications without having to absorb hundreds of lines of code at
once. You will also have an understanding of how to use the API from top to bottom.

One significant difference between this book and Bullet's demos is that Bullet uses
GLUT (OpenGL Utility Toolkit) for rendering, while this book uses FreeGLUT.
This library was chosen partly because FreeGLUT is open source, allowing you
to browse through its internals if you wish to, and partly because GLUT has not
received an update since 1998 (the main reason why FreeGLUT was built to replace
it). But, for our purposes, GLUT and FreeGLUT are essentially identical, even
down to the function names they use, so it should be intuitive to compare and find
similarities between Bullet's demo applications and the applications we will be
building throughout this book.

Building a Game Application

[10]

You can examine the Bullet application demos by opening the following project
file in Visual Studio:

<Bullet installation folder>\build\vs2010\0BulletSolution.sln

This would be a good time to open this project, compile, and launch some demos.
This will help us to get a feel for the kinds of applications we will be building.

To run a different project, right-click on one of the projects,
select Set as StartUp Project, and hit F5.

Starting a new project
Linking the library and header files into a new project can be an exhausting process,
but it is essential for building a new standalone project. However, to keep things
simple, the Chapter1.1_EmptyProject project in the book's source code has all
of the headers and library files included with an empty main() function ready for
future development. If you wish to examine how these projects are pieced together,
take the time to explore their project properties in Visual Studio.

Here is a screenshot of the files extracted from the book's source code, and made
ready for use:

Note that FreeGLUT also relies on freeglut.dll being placed in
the project's working folder. Normally this requires the FreeGLUT
project to be compiled first, but since it's packaged with the book's
source code, this is unnecessary.

Chapter 1

[11]

Building the application layer
Now we can begin to build an application layer. The purpose of this layer is to
separate essential communication with the Windows operating system from our
custom application logic. This allows our future demo applications to be more
focused, and keep our codebase clean and re-usable.

Continue from here using the Chapter1.2_TheApplicationLayer
project files.

Configuring FreeGLUT
Handling low-level operating system commands, particularly for a graphical
application, can be a tedious and painful task, but the FreeGLUT library was
created to help people like us to create OpenGL-based applications and avoid
such burdens. The trade-off is that when we launch our application, we effectively
hand the majority of control over to the FreeGLUT library.

We can still control our application, but only through a series of callback functions.
Each callback has a unique purpose, so that one might be used when its time to
render the scene, and another is used when keyboard input is detected. This is a
common design for utility toolkits such as FreeGLUT. We will be keeping all of our
application layer code within a single class called BulletOpenGLApplication.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

Here is a code snippet of the basic class declaration for BulletOpenGLApplication:

class BulletOpenGLApplication {
public:
 BulletOpenGLApplication();
 ~BulletOpenGLApplication();
 void Initialize();
 virtual void Keyboard(unsigned char key, int x, int y);
 virtual void KeyboardUp(unsigned char key, int x, int y);
 virtual void Special(int key, int x, int y);

Building a Game Application

[12]

 virtual void SpecialUp(int key, int x, int y);
 virtual void Reshape(int w, int h);
 virtual void Idle();
 virtual void Mouse(int button, int state, int x, int y);
 virtual void PassiveMotion(int x, int y);
 virtual void Motion(int x, int y);
 virtual void Display();
};

These essential functions make up the important hooks of our application layer
class. The functions have been made virtual to enable us to extend or override
them in future projects.

As mentioned previously, FreeGLUT has different functions for different purposes,
such as when we press a key, or resize the application window. In order for
FreeGLUT to know which function to call at what moment, we make a series of calls
that map specific actions to a custom list of callback functions. Since these calls will
only accept function pointers that follow specific criteria in return value and input
parameters, we are restricted to using the arguments listed in the previous functions.

Meanwhile, by their nature, callback functions must call to a known, constant place
in memory; hence a static function fits the bill. But, static functions cannot perform
actions on nonstatic or nonlocal objects. So, we either have to turn the functions
in BulletOpenGLApplication static, which would be incredibly ugly from a
programming perspective, or we have to find a way to give it a local reference by
passing it as a parameter. However, we just determined that the arguments have
already been decided by FreeGLUT and we cannot change them.

The workaround for this is to store our application in a global static pointer
during initialization.

static BulletOpenGLApplication* g_pApp;

With this pointer our callback functions can reach an instance of our application
object to work with at any time. Meanwhile an example declaration of one of our
callbacks is written as follows:

static void KeyboardCallback(unsigned char key, int x, int y);

The only purpose of each of these callback functions is to call the equivalent function
in our application class through the global static pointer, as follows:

static void KeyboardCallback(unsigned char key, int x, int y) {
 g_pApp->Keyboard(key, x, y);
}

Chapter 1

[13]

Next, we need to hook these functions into FreeGLUT. This can be accomplished
using the following code:

glutKeyboardFunc(KeyboardCallback);

The previous command tells FreeGLUT to map our KeyboardCallback() function
to any key-down events. The following section lists FreeGLUT functions which
accomplish a similar task for other types of events.

glutKeyboardFunc/glutKeyboardUpFunc
The glutKeyboardFunc and glutKeyboardUpFunc functions are called when
FreeGLUT detects that a keyboard key has been pressed down or up, respectively.
These functions only work for keyboard characters that can be represented by a
char data type (glutSpecialFunc and glutSpecialUpFunc handle other types).

Some applications and game engines may only call the input function once the
key is pressed down, and only sends another signal when the key is released,
but nothing in-between. Meanwhile, others may buffer the inputs allowing you
to poll it at later times to check the current state of any key or input control, while
others may provide a combination of both methods allowing you to choose which
method works best for you.

By default, FreeGLUT calls this function repeatedly while a key is held down,
but this behavior can be toggled globally with the glutSetKeyRepeat() and
glutIgnoreKeyRepeat() commands.

glutSpecialFunc/glutSpecialUpFunc
The glutSpecialFunc and glutSpecialUpFunc functions are similar to the
previous keyboard commands, but called for special keys such as Home, Insert,
the arrow keys, and so on.

glutMouseFunc
The glutMouseFunc function is called when mouse button input is detected.
This applies to both button up and button down events, which can be distinguished
from the state parameter it sends.

glutMotionFunc/glutPassiveMotionFunc
The glutMotionFunc and glutPassiveMotionFunc functions are called when
mouse movement is detected. The glutMotionFunc() function is used when
any mouse button is currently held down, while the glutPassiveMotionFunc()
function is used when no mouse buttons are pressed.

Building a Game Application

[14]

glutReshapeFunc
The glutReshapeFunc function is called when FreeGLUT detects that the
application window has changed its shape. This is necessary for the graphics
system (and sometimes game logic) to know the new screen size and it's up
to us to make important changes to the scene to handle all possibilities.

glutDisplayFunc
If FreeGLUT determines that the current window needs to be redrawn,
the glutDisplayFunc function is called. Sometimes Windows detects that
an application window is in a damaged state, such as when another window
has been partially obscuring it, and this is where this function might be called.
We would typically just re-render the scene here.

glutIdleFunc
The glutIdleFunc function fills the role of the typical update of game applications.
It is called when FreeGLUT is not busy processing its own events, giving us time to
perform our own game logic instructions.

More information about these functions can be found in the FreeGLUT
documentation at: http://freeglut.sourceforge.net/docs/api.php

Initializing FreeGLUT
Finally, we need to configure our application window before FreeGLUT can launch it
for us. This is done through the following function calls:

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);
glutInitWindowPosition(0, 0);
glutInitWindowSize(width, height);
glutCreateWindow(title);
glutSetOption (GLUT_ACTION_ON_WINDOW_CLOSE,
 GLUT_ACTION_GLUTMAINLOOP_RETURNS);

The following section provides a brief description of each of the previous
function calls.

Chapter 1

[15]

glutInit
The glutInit function performs first-step initialization of the FreeGLUT library,
passing in the application's parameters. There are several low-level options one
can play with here (such as enabling debugging in FreeGLUT itself), but we're not
interested in them for our demos. Check the documentation for more information
about the available options.

glutInitDisplayMode
The glutInitDisplayMode function sets the initial display mode of the window,
mostly in terms of what kind of buffers are available. It uses a bitmask to set the
values and the call shown previously enables a double-buffered window (GLUT_
DOUBLE), make these buffers include an alpha channel (GLUT_RGBA), and also include
a separate depth buffer (GLUT_DEPTH). We'll explain these concepts more throughout
the book. There are many more options available, so those who are curious can check
the online documentation.

Note that RGBA is a short form for the three primary
colors; red, green, and blue, and A is short form for alpha,
or transparency. This is a common form of describing a
single color value in computer graphics.

glutInitWindowPosition/glutInitWindowSize
The glutInitWindowPosition and glutInitWindowSize functions set the initial
position and size of the window in pixels. The position is set relative to the top-left
of the main screen.

glutCreateWindow
The glutCreateWindow function spawns a top-level window for the Windows OS
to manage, and sets the title we want it to display in the title bar.

glutSetOption
The glutSetOption function is used to configure a number of options in the window,
even the values that we've already edited such as the display mode and the window
size. The two options passed in the previous example ensure that when the main
window is closed, the main loop will return, exiting our game logic. The main loop
itself will be explained in the following section.

Building a Game Application

[16]

Launching FreeGLUT
The final and possibly most important function in FreeGLUT is glutMainloop(). The
moment this function is called, we hand the responsibility of application management
over to the FreeGLUT library. From that point forward, we only have control when
FreeGLUT calls the callback functions we mapped previously.

In our project code, all of the listed functions are encapsulated with a global function
called glutmain(), which accepts an instance of our application class as a parameter,
stores it in our global pointer, calls its own Initialize() function (because even our
application class will want to know when the application is powering up), and then
calls the glutMainloop() function.

And so, finally, we have everything in place to write the all-powerful main()
function. In this chapter's source code, the main() function looks as follows:

int main(int argc, char** argv)
{
 BulletOpenGLApplication demo;
 return glutmain(argc, argv, 1024, 768, "Introduction to Game
 Physics with Bullet Physics and OpenGL", &demo);
}

Before proceeding, try to compile and run the application from this chapter's source
code (F5 in Visual Studio). A new window should launch with either a plain-white
or garbled background (depending on various low-level Windows configuration
settings) as shown in the following screenshot. Do not worry if you see a garbled
background for now as this will be resolved later.

Chapter 1

[17]

It is also worth checking that the callback functions are working properly by adding
breakpoints to them and verifying that they trigger each frame, and/or when you
press a key or click on a mouse button.

Summary
Building a standalone project that hooks into other libraries is the first step towards
building an application. We skipped most of this grunt work by using a prebuilt
template; but if you're just starting out with the game development, it is important to
understand and practice this process for the future, since this will not be the last time
you have to tinker with Visual Studio project properties!

The most interesting lesson we learned is how to keep our application layer code in a
separate class, and how to get hooks into the FreeGLUT library, thus giving it control
over our application.

In the next chapter, we will introduce two of the most important parts of any game:
graphics and user input!

